Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.

نویسندگان

  • Zhantao Han
  • Badruddeen Sani
  • Wojciech Mrozik
  • Martin Obst
  • Barbara Beckingham
  • Hrissi K Karapanagioti
  • David Werner
چکیده

This paper discusses the sorbent properties of magnetic activated carbons and biochars produced by wet impregnation with iron oxides. The sorbents had magnetic susceptibilities consistent with theoretical predictions for carbon-magnetite composites. The high BET surface areas of the activated carbons were preserved in the synthesis, and enhanced for one low surface area biochar by dissolving carbonates. Magnetization decreased the point of zero charge. Organic compound sorption correlated strongly with BET surface areas for the pristine and magnetized materials, while metal cation sorption did not show such a correlation. Strong sorption of the hydrophobic organic contaminant phenanthrene to the activated carbon or biochar surfaces was maintained following magnetite impregnation, while phenol sorption was diminished, probably due to enhanced carbon oxidation. Copper, zinc and lead sorption to the activated carbons and biochars was unchanged or slightly enhanced by the magnetization, and iron oxides also contributed to the composite metal sorption capacity. While a magnetic biochar with 219 ± 3.7 m(2)/g surface area nearly reached the very strong organic pollutant binding capacity of the two magnetic activated carbons, a magnetic biochar with 68 ± 2.8 m(2)/g surface area was the best metal sorbent. Magnetic biochars thus hold promise as more sustainable alternatives to coal-derived magnetic activated carbons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Adsorption Properties of Activated Carbons with Different Crops Residues as Precursors for Gold Cyanide Recovery: An Iranian Gold Industry Guide

Adsorption of gold cyanide on three types of Activated Carbons (ACs) has been investigated in batch and column adsorption conditions. Applied ACs have been derived from different crops precursors i.e., coconut shell (CAC), peach stone (PAC), and walnut shell (WAC). As peach stone and walnut shells are abundant agricultural residues in Iran, the activated carbons produced from these precurso...

متن کامل

Adsorption of nitrate from aqueous solution using activated carbon-supported Fe0, Fe2 (SO4)3, and FeSO4

In this laboratory scale study, impregnated almond shell activated carbon was used as adsorbent to investigate its feasibility for nitrate adsorption from aqueous medium. The effects of activated carbon dosage and contact time have been examined in batch experiments. Experimental data show that impregnated activated carbons by Fe0, Fe2 (SO4)3, and FeSO4 were more effective than virgin almond ac...

متن کامل

ADSORPTION OF p-NITROPHENOL IN THREE DIFFERENT ACTIVATED CARBONS AT DIFFERENT pH

Adsorption of p-Nitrophenol by three different activated carbons (F100, S.E.I. and B.D.H.) was carried out at 301 K and at controlled pH conditions. Two different adsorption models (Langmuir model and Freundlich model) were studied and compared. The adsorption capacity of the carbons depends on the Point of Zero Charge (PZC) and surface area of the carbons. Adsorption of the solute at higher pH...

متن کامل

Preparation, characterization and phenol adsorption capacity of activated carbons from African beech wood sawdust

In the present study, different activated carbons were prepared from carbonized African beech wood sawdust by potassium hydroxide activation. The activated carbons were characterized by brunauer–emmett–teller, scanning electron microscope, fourier transform infrared spectroscopy, and thermogravimetric analyzer. The phenol adsorption capacity of the prepared carbons was evaluated. The d...

متن کامل

Functional Groups Determine Biochar Properties (pH and EC) as Studied by Two-Dimensional 13C NMR Correlation Spectroscopy

While the properties of biochar are closely related to its functional groups, it is unclear under what conditions biochar develops its properties. In this study, two-dimensional (2D) (13)C nuclear magnetic resonance (NMR) correlation spectroscopy was for the first time applied to investigate the development of functional groups and establish their relationship with biochar properties. The resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water research

دوره 70  شماره 

صفحات  -

تاریخ انتشار 2015